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Abstract

Predicting musical-instrument audio from silent perfor-
mance video is a challenging cross-modal task: visual in-
puts convey timing and gestural cues but lack explicit fre-
quency and timbre information, which are fundamental as-
pects of synthesizing music. This capability has applica-
tions in film restoration, virtual and augmented reality, and
music education.

We tackle this problem by proposing a unified end-to-
end spectrogram-regression pipeline where a CNN encoder
and LSTM decoder map 224x224 video frames to log-mel
spectrograms. To provide explicit pitch supervision, we in-
troduce a MIDI-auxiliary component that combines aligned
symbolic music score embeddings fused with visual fea-
tures.

This model is trained on the URMP dataset, where
our vision-only model successfully captures some rhythmic
structure but yields blurred, low-frequency outputs. Adding
MIDI guidance cuts spectrogram error by over 50% and
recovers harmonic lines. An offline preprocessing stage
changes the training time to be 30x faster.

Our contributions are: (1) the first instrument-agnostic
spectrogram regressor for silent video, (2) demonstration
that symbolic guidance restores pitch content, and (3) a fast
preprocessing pipeline for deep training.

1. Introduction

Learning to synthesize musical audio from silent video
requires translating intricate visual motion—bow strokes,
fingerings, body posture—into continuous audio features
encoding pitch, timbre, and dynamics. While humans
seamlessly imagine ocean waves from a photo of a beach,
machines must infer phase and harmonic structure absent
from pixel values. Early computer-vision efforts demon-
strated that rigid impact sounds can be predicted from object
motion [5], and lip-based video-to-speech models recon-
struct intelligible speech spectrograms without transcripts
[2]. However, continuous music demands modeling poly-
phonic and timbral complexity over extended sequences and

remains an underexplored problem in the field.

In this work, we ask: Can a model generate realistic in-
strument audio directly from silent performance video? We
build an end-to-end pipeline: a ResNet-18 extracts frame-
level embeddings, an LSTM decodes these into 128-band
log-mel spectrograms, and Griffin-Lim or neural vocoders
synthesize waveforms. To address the lack of explicit pitch
cues in raw frames, we augment with a MIDI-auxiliary
branch: symbolic music-score events embedded by a sec-
ond LSTM and concatenated with visual features. We pre-
process video frames, MIDI data, and audio spectrograms
offline, reducing per-epoch load from 6 min to 10-15 s,
which enables effective 200-epoch training. We evaluate
variants — a vision-only model and a vision + MIDI model
(with fixed data) — using spectrogram MSE and listening
tests.

Our experiments on URMP [1] show that vision alone
captures rhythmic patterns but blurs harmonic content
(MSE about 13.0). Introducing MIDI guidance lowers spec-
trogram MSE to 4.0, revealing clear harmonic lines in the
output. Success would enable restoring silent concerts, in-
teractive music tutoring (real-time visual feedback via pre-
dicted audio), and auto-generated VR soundtracks keyed to
motion. Through quantitative and qualitative analyses, we
demonstrate the necessity of symbolic supervision for pitch
reconstruction and outline limitations and future directions.

2. Related Work

Cross-modal audio synthesis from silent video has been
explored primarily in two areas. Early work by Owens et al.
introduced Visually Indicated Sounds, using a CNN-LSTM
to predict cochleogram features for rigid impact events,
showing that motion trajectories carry recoverable timing
and energy information [5]. Subsequent methods, such as
FoleyGAN condition a GAN on action embeddings to gen-
erate synchronized footsteps and collision sounds [4], and
Diff-Foley employs diffusion models to produce ambient
audio across diverse scenes [3]. While these approaches re-
cover transient or percussive sounds well, they do not model
sustained harmonic content or complex timbre.

In parallel, speech-from-video models leverage the tight



alignment between articulatory motion and spectral fea-
tures. Lip2Speech uses a visual-context GAN to map lip-
only frames to speech spectrograms—achieving intelligi-
ble outputs without transcripts [2]—and LipVoicer applies
diffusion-based architectures to further improve speech fi-
delity. These systems succeed by exploiting constrained vi-
sual cues and limited frequency ranges inherent in human
speech, but do not address the continuous pitch and timbral
variability found in music.

Music synthesis from video adds layers of complexity:
continuous pitch trajectories, timbral richness, and poten-
tial polyphony. Symbolic-intermediate methods like Audeo
convert silent piano video into piano-roll representations
and then synthesize audio via a generative model, relying
on visible key activations for discrete pitch cues [6]. Al-
though effective for keyboard instruments, Audeo’s applica-
bility is restricted to one instrument, as such approaches do
not generalize to all instruments like violin or flute—where
sound emerges from continuous gestures rather than dis-
crete events.

To our knowledge, no prior work presents an end-to-
end spectrogram regressor that (1) generalizes across multi-
ple instruments in a unified model, and also (2) integrates
symbolic guidance to restore pitch content. Our method
bridges these gaps by combining CNN-LSTM encoders
from impact-sound synthesis with a MIDI-auxiliary branch
inspired by piano-roll pipelines, fusing visual feature em-
beddings and aligned symbolic music score embeddings
into a single decoder that recovers both rhythmic and har-
monic structure across instruments.

3. Methodology

Our approach is organized into four stages: (1) offline
preprocessing, (2) dataset construction, (3) model architec-
ture, and (4) training and inference.

3.1. Offline Preprocessing

We convert raw URMP video, audio, and MIDI into syn-
chronized tensors in three parallel pipelines:

e Video: We extract and crop solo-instrument video
strips, sample at 30 fps, and group into clips of 64
consecutive frames. Each frame is resized to 224x224
and normalized (ImageNet mean/std), then saved as a
64x3x224x224 tensor.

e Audio: Each stem is resampled to 22050 Hz, con-
verted to an 80-band log-mel spectrogram via a 1024-
sample STFT window and 512-sample hop, and stored
as a T x 80 tensor (with 7" matching the video clip
length).

e MIDI: Note events from the aligned MIDI score are
quantized to the mel time grid and encoded as a piano-

roll matrix of size T' x F' (where F' is the MIDI pitch
range), then saved as a tensor.

3.2. Dataset Construction

We use the URMP dataset’s 44 chamber pieces [ 1], iso-
lating solo-instrument segments via provided stems. A cus-
tom loader synchronizes video-clip, mel-spectrogram, and
(optionally) piano-roll tensors into training samples. We
randomly split the data into 80% train, 10% validation, and
10% test.

3.3. Model Architecture
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Figure 1. Spectrogram-regression pipeline. (a) Offline prepro-
cessing converts raw performance video into clips of frames and
aligns MIDI scores into piano-roll tensors. (b) A CNN encoder
extracts visual embeddings, and an auxiliary LSTM embeds MIDI
events. (c) A fusion LSTM decodes combined embeddings into
log-mel spectrogram frames. (d) Inference reconstructs audio via
Griffin-Lim or a neural vocoder.

As visualized in 1, our unified spectrogram-regression
model consists of:

 Visual encoder: A pretrained ResNet-18 maps each
224x224 RGB frame to a 512-dim embedding.

e MIDI encoder (auxiliary): A one-layer LSTM (hid-
den size 128) processes the 1" x F' piano-roll sequence
and produces a 128-dim embedding per time step.

¢ Feature fusion: At each time step, we concatenate
the 512-dim visual and (when used) MIDI embeddings
into a 1024-dim vector.

e Spectrogram decoder: A two-layer LSTM (hidden
size 512) consumes the fused embeddings and outputs
a sequence of 80-dim mel-spectrogram frames.

* Output layer: A fully connected layer maps each
LSTM hidden state to an 80-dim mel-spectrogram vec-
tor.

¢ Waveform synthesis: During inference, predicted mel
frames are converted back to audio with the Grif-
fin—Lim algorithm (100 iterations) or a pretrained neu-
ral vocoder.



3.4. Training

We train two variants:

1. Vision only: visual encoder + spectrogram decoder.

2. Vision + MIDI: Same as (1) with auxiliary component

All models use mean-squared error on predicted vs. ground-
truth mel-spectrogram frames. We train for 200 epochs with
Adam (learning rate of 1 x 10~%), batch size 4. Offline
preprocessing reduces per-epoch load from roughly 6 min
to 10—15s on a single NVIDIA RTX 4060 GPU.

3.5. Inference Procedure

At test time, we perform sliding-window inference on
held-out URMP clips:

* Extract windows of T' = 64 frames with hop size H =
32.

* Predict mel segments (80x64) for each window.

* Concatenate the 57 windows (for a 62s violin clip) into
a full mel tensor of shape 80 x 5336.

» Synthesize the waveform via Griffin-Lim (64 itera-
tions), yielding 1,365,760 samples.

This smoke test verifies end-to-end operation and audible
rhythm and pitch under the MIDI-auxiliary variant. The
detailed quantitative results and listening study results are
presented in Section 4

4. Experimental Results
4.1. Implementation Details

All models follow the setup in Section 3.4: trained for
200 epochs with Adam (LR =1 X 10~%), batch size 4, on
an NVIDIA RTX 4060. Solo-instrument video clips are 64
frames at 30 fps (224x224), and audio spectrograms use 80
mel bands (1024-sample window, 512-sample hop).

The baseline model is the vision-only model, and the
goal is to measure how much more accurate the MIDI-
auxiliary with vision is.

4.2. Quantitative Evaluation

Table 1 reports mean-squared error (MSE) in the log-mel
domain and automatic pitch-detection accuracy on held-out
URMP clips. Pitch accuracy is the fraction of frames whose
estimated fundamental frequency (via CREPE) lies within
one semitone of the ground truth.

The vision-only model—while learning rhythmic tim-
ing—yields negligible pitch accuracy and very low spectro-
gram fidelity. Adding MIDI guidance and fixing performer-
specific videos substantially reduces MSE and improves
pitch accuracy. MSE is reduced by over 50% and pitch ac-
curacy increases by 50%.

Model MSE | Pitch-Acc. T
Vision only 13.0 0%
Vision + MIDI (fixed data) 4.0 46%

Table 1. Quantitative performance on URMP. Lower MSE indi-
cates closer match in the log-mel domain; Pitch-Acc. is percent of
frames within one semitone.

4.3. Qualitative Analysis
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Figure 2. Ground-truth vs. predicted mel spectrograms for a violin
clip. The MIDI-aux model (bottom) reproduces energy bursts but
blurs harmonic bands; the MIDI-aux model (right) recovers clear
harmonic structure.

Figure 2 illustrates the difference in spectral detail: A
predicted spectrogram with vision-MIDI will be more mud-
dled and more choppy with its output, but it is still able
to maintain distinct harmonic lines. The issue with this is
that audio noise can drown out some of the harmonics from
standing out, which in turn leads to a less succinct and real-
istic violin sound.

A vision-only spectrogram will generally have no pitch
content, minus noise (with occasional energy bursts). As a
result, this produces a blank graph that is non-informative,
but further proves how vision-only cannot pick up musical
pitch content.

4.4. Qualitative Evaluation

An informal listening test survey was conducted with
five listeners (the author plus four peers). For each model
variant, listeners heard 3 30-second clips and answered:

1. Does this sound like a coherent piece of music?
(yes/no)

2. Which instrument family does it resemble? (wood-
wind/brass/strings)

Table 2 summarizes their responses.



Model / Clip Coherent Top Family
Violin (Vis only) N/A Rhythmic (4/5)
Clarinet (Vis only) N/A Rhythmic (3/5)
Trumpet (Vis only) N/A Rhythmic (1/5)
Violin (Vis+MIDI) 5/5 Strings (4/5)
Clarinet (Vis+MIDI) 4/5 Woodwind (3/5)
Trumpet (Vis+MIDI) 1/5 Brass (2/5)

Table 2. Listening survey: coherence judgments (# yes/total) and
top family choice (count/total).

These informal results corroborate our quantitative met-
rics: Visual information is limited in only being able to pro-
vide some rhythmic information. On the other hand, the ad-
dition of symbolic guidance and precise video cropping can
yield audio that listeners perceive as passable music with
the correct instrument family.

5. Discussion and Conclusions

In this work, we trained two variants of our spectrogram-
regression model on the URMP dataset [1]: a vision-only
baseline, a and a vision+MIDI model. All models used a
ResNet-18 encoder and 2-layer LSTM decoder (hidden size
512), trained for 200 epochs with Adam (LR =1 x 10™%)
and batch size 4, as described in Section 3.4. Quantita-
tive metrics (Table 1) show that by incorporating MIDI-
auxiliary, we can reduce MSE by over 50% and increase
pitch accuracy by about 45%

These numbers may appear low compared to conven-
tional audio-only tasks, but cross-modal music reconstruc-
tion is inherently challenging: pixel values carry timing
and gesture cues but omit phase, harmonic overtones, and
timbral nuance [5]. Griffin—Lim phase estimation and log-
mel representations further limit fidelity. Consequently, we
place greater emphasis on qualitative evaluation: as Figure
2 illustrates and our informal listening survey (Table 2) con-
firms, the vision + MIDI model produces audio that listen-
ers recognize as coherent music and correctly identify as the
target instrument family. This aligns with trends in speech-
from-video work, where perceptual intelligibility often out-
paces raw spectrogram metrics [2].

In conclusion, we present an instrument-agnostic, end-
to-end spectrogram-regression pipeline for silent video,
augmented with a novel MIDI-auxiliary branch for explicit
pitch supervision. Our efficient offline preprocessing accel-
erates training by over 30x, enabling rigorous comparison
of vision-only and symbolic-guided models. While quan-
titative errors remain substantial due to modality gaps and
reconstruction artifacts, our qualitative results demonstrate
perceptually convincing music synthesis.

By bridging visual gesture and symbolic score—drawing

on insights from visually indicated sounds [5] and symbolic
piano-roll pipelines [6]—we take a step toward applications
in film restoration, VR/AR sound design, and music educa-
tion.

Future work will explore differentiable DSP modules
(DDSP) as they will be able to create more realistic sounds
through digital signal processing. It is possible that our
model is not able to capture as rich details, so DDSP can aid
in that. Integration of neural vocoders such as HiFi-GAN or
WaveGAN will create smoother reconstruction waveforms.
An extension to multi-instrument ensembles will heavily
further close the gap between silent video and rich musical
audio.
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